If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-6y-10=0
a = 1; b = -6; c = -10;
Δ = b2-4ac
Δ = -62-4·1·(-10)
Δ = 76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{76}=\sqrt{4*19}=\sqrt{4}*\sqrt{19}=2\sqrt{19}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{19}}{2*1}=\frac{6-2\sqrt{19}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{19}}{2*1}=\frac{6+2\sqrt{19}}{2} $
| 90=0.2x+65 | | 3a+9=4a−3 | | 94+6r-4=180 | | (x+1)(1.2x^2-0.8x)=0 | | t-85=1 | | m+93=64 | | (5x/0.5)+6x=180 | | u+302=656 | | 2x+24=31 | | t+420=684 | | x^2+50-10x=10 | | g-279=44 | | 10x^2+36x+16=0 | | f-67/2=9 | | 5n+9+11=4 | | 4=z-89 | | f−672=9 | | k+52=68 | | n+9=64 | | b-43=34 | | q-71=12 | | z+5=84 | | s-33=9 | | 57=w+5 | | w+14=69 | | 0=5900a+80 | | f+2=18 | | -10x^2+1700x-47000=0 | | q+10=16 | | -2/3x+3/7=2/1 | | 2/3+2/3(x+1)^1/3=0 | | 0.03z-0.07=-0.04 |